Product details

Arm CPU 2 Arm Cortex-A72 Arm (max) (MHz) 1200 Coprocessors 2 Arm Cortex-R5F, MCU Island of 1 Dual Arm Cortex-R5 CPU 64-bit Graphics acceleration 1 3D Display type 1 DSI, 1 EDP, MIPI DPI Protocols Ethernet Ethernet MAC 2-Port 10/100/1000 PCIe 1 PCIe Gen 3 Hardware accelerators 1 Deep learning accelerator, 1 Depth and Motion accelerator, 1 Vision Processing accelerator, 1 video encode/decode accelerator Features Multimedia, Vision Analytics Operating system Linux, QNX, RTOS Rating Automotive Power supply solution LP8764-Q1, TPS6594-Q1 Operating temperature range (°C) -40 to 125
Arm CPU 2 Arm Cortex-A72 Arm (max) (MHz) 1200 Coprocessors 2 Arm Cortex-R5F, MCU Island of 1 Dual Arm Cortex-R5 CPU 64-bit Graphics acceleration 1 3D Display type 1 DSI, 1 EDP, MIPI DPI Protocols Ethernet Ethernet MAC 2-Port 10/100/1000 PCIe 1 PCIe Gen 3 Hardware accelerators 1 Deep learning accelerator, 1 Depth and Motion accelerator, 1 Vision Processing accelerator, 1 video encode/decode accelerator Features Multimedia, Vision Analytics Operating system Linux, QNX, RTOS Rating Automotive Power supply solution LP8764-Q1, TPS6594-Q1 Operating temperature range (°C) -40 to 125
FCBGA (ALZ) 770 529 mm² 23 x 23

Processor cores:

  • Two C7x floating point, vector DSP, up to 1.0 GHz, 160 GFLOPS, 512 GOPS
  • Deep-learning matrix multiply accelerator (MMA), up to 8 TOPS (8b) at 1.0 GHz
  • Vision Processing Accelerators (VPAC) with Image Signal Processor (ISP) and multiple vision assist accelerators
  • Depth and Motion Processing Accelerators (DMPAC)
  • Dual 64-bit Arm Cortex-A72 microprocessor subsystem at up to 2 GHz
    • 1MB shared L2 cache per dual-core Cortex-A72 cluster
    • 32KB L1 DCache and 48KB L1 ICache per Cortex-A72 core
  • Up to Six Arm Cortex-R5F MCUs at up to 1.0 GHz
    • 16K I-Cache, 16K D-Cache, 64K L2 TCM
    • Two Arm Cortex-R5F MCUs in isolated MCU subsystem
    • Four (TDA4VE) or Two (TDA4AL/TDA4VL)Arm Cortex-R5F MCUs in general compute partition
  • GPU IMG BXS-4-64, 256kB Cache, up to 800 MHz, 50 GFLOPS, 4 GTexels/s (TDA4VE and TDA4VL)
  • Custom-designed interconnect fabric supporting near max processing entitlement

Memory subsystem:

  • Up to 4MB of on-chip L3 RAM with ECC and coherency
    • ECC error protection
    • Shared coherent cache
    • Supports internal DMA engine
  • Up to Two External Memory Interface (EMIF) modules with ECC
    • Supports LPDDR4 memory types
    • Supports speeds up to 4266 MT/s
    • Two (TDA4VE) or One (TDA4AL/TDA4VL) 32-bit data bus with inline ECC up to 17 GB/s per EMIF
  • General-Purpose Memory Controller (GPMC)
  • One (TDA4AL/TDA4VL) or Two (TDA4VE) 512KB on-chip SRAM in MAIN domain, protected by ECC

Functional Safety:

  • Functional Safety-Compliant targeted (on select part numbers)
  • Developed for functional safety applications
  • Documentation available to aid ISO 26262 functional safety system design up to ASIL-D/SIL-3 targeted
  • Systematic capability up to ASIL-D/SIL-3 targeted
  • Hardware integrity up to ASIL-D/SIL-3 targeted for MCU Domain
  • Hardware integrity up to ASIL-B/SIL-2 targeted for Main Domain
  • Hardware integrity up to ASIL-D/SIL-3 targeted for Extended MCU (EMCU) portion of the Main Domain
  • Safety-related certification
    • ISO 26262 planned

Device security (on select part numbers):

  • Secure boot with secure runtime support
  • Customer programmable root key, up to RSA-4K or ECC-512
  • Embedded hardware security module
  • Crypto hardware accelerators – PKA with ECC, AES, SHA, RNG, DES and 3DES

High speed serial interfaces:

  • One PCI-Express (PCIe) Gen3 controllers
    • Up to four lanes per controller
    • Gen1 (2.5GT/s), Gen2 (5.0GT/s), and Gen3 (8.0GT/s) operation with auto-negotiation
  • One USB 3.0 dual-role device (DRD) subsystem
    • Enhanced SuperSpeed Gen1 Port
    • Supports Type-C switching
    • Independently configurable as USB host, USB peripheral, or USB DRD
  • Two CSI2.0 4L RX plus Two CSI2.04L TX

Automotive interfaces:

  • Twenty Modular Controller Area Network (MCAN) modules with full CAN-FD support

Display subsystem:

  • One (TDA4AL/TDA4VL) or Two (TDA4VE) DSI 4L TX (up to 2.5K)
  • One eDP 4L (TDA4VE/TDA4VL)
  • One DPI

Audio interfaces:

  • Five Multichannel Audio Serial Port (MCASP) modules

Video acceleration:

  • TDA4VE: H.264/H.265 Encode/Decode (up to 480 MP/s)
  • TDA4AL: H.264/H.265 Encode only (up to 480 MP/s)
  • TDA4VL: H.264/H.265 Encode/Decode (up to 240 MP/s)

Ethernet:

  • Two RMII/RGMII interfaces

Flash memory interfaces:

  • Embedded MultiMediaCard Interface ( eMMC™ 5.1)
  • One Secure Digital 3.0/Secure Digital Input Output 3.0 interfaces (SD3.0/SDIO3.0)
  • Two simultaneous flash interfaces configured as
    • One OSPI or HyperBus™ or QSPI, and
    • One QSPI

System-on-Chip (SoC) architecture:

  • 16-nm FinFET technology
  • 23 mm x 23 mm, 0.8-mm pitch, 770-pin FCBGA (ALZ)

Companion Power Management ICs (PMIC):

  • Functional Safety-Compliant support up to ASIL-D / SIL-3 targeted
  • Flexible mapping to support different use cases

Processor cores:

  • Two C7x floating point, vector DSP, up to 1.0 GHz, 160 GFLOPS, 512 GOPS
  • Deep-learning matrix multiply accelerator (MMA), up to 8 TOPS (8b) at 1.0 GHz
  • Vision Processing Accelerators (VPAC) with Image Signal Processor (ISP) and multiple vision assist accelerators
  • Depth and Motion Processing Accelerators (DMPAC)
  • Dual 64-bit Arm Cortex-A72 microprocessor subsystem at up to 2 GHz
    • 1MB shared L2 cache per dual-core Cortex-A72 cluster
    • 32KB L1 DCache and 48KB L1 ICache per Cortex-A72 core
  • Up to Six Arm Cortex-R5F MCUs at up to 1.0 GHz
    • 16K I-Cache, 16K D-Cache, 64K L2 TCM
    • Two Arm Cortex-R5F MCUs in isolated MCU subsystem
    • Four (TDA4VE) or Two (TDA4AL/TDA4VL)Arm Cortex-R5F MCUs in general compute partition
  • GPU IMG BXS-4-64, 256kB Cache, up to 800 MHz, 50 GFLOPS, 4 GTexels/s (TDA4VE and TDA4VL)
  • Custom-designed interconnect fabric supporting near max processing entitlement

Memory subsystem:

  • Up to 4MB of on-chip L3 RAM with ECC and coherency
    • ECC error protection
    • Shared coherent cache
    • Supports internal DMA engine
  • Up to Two External Memory Interface (EMIF) modules with ECC
    • Supports LPDDR4 memory types
    • Supports speeds up to 4266 MT/s
    • Two (TDA4VE) or One (TDA4AL/TDA4VL) 32-bit data bus with inline ECC up to 17 GB/s per EMIF
  • General-Purpose Memory Controller (GPMC)
  • One (TDA4AL/TDA4VL) or Two (TDA4VE) 512KB on-chip SRAM in MAIN domain, protected by ECC

Functional Safety:

  • Functional Safety-Compliant targeted (on select part numbers)
  • Developed for functional safety applications
  • Documentation available to aid ISO 26262 functional safety system design up to ASIL-D/SIL-3 targeted
  • Systematic capability up to ASIL-D/SIL-3 targeted
  • Hardware integrity up to ASIL-D/SIL-3 targeted for MCU Domain
  • Hardware integrity up to ASIL-B/SIL-2 targeted for Main Domain
  • Hardware integrity up to ASIL-D/SIL-3 targeted for Extended MCU (EMCU) portion of the Main Domain
  • Safety-related certification
    • ISO 26262 planned

Device security (on select part numbers):

  • Secure boot with secure runtime support
  • Customer programmable root key, up to RSA-4K or ECC-512
  • Embedded hardware security module
  • Crypto hardware accelerators – PKA with ECC, AES, SHA, RNG, DES and 3DES

High speed serial interfaces:

  • One PCI-Express (PCIe) Gen3 controllers
    • Up to four lanes per controller
    • Gen1 (2.5GT/s), Gen2 (5.0GT/s), and Gen3 (8.0GT/s) operation with auto-negotiation
  • One USB 3.0 dual-role device (DRD) subsystem
    • Enhanced SuperSpeed Gen1 Port
    • Supports Type-C switching
    • Independently configurable as USB host, USB peripheral, or USB DRD
  • Two CSI2.0 4L RX plus Two CSI2.04L TX

Automotive interfaces:

  • Twenty Modular Controller Area Network (MCAN) modules with full CAN-FD support

Display subsystem:

  • One (TDA4AL/TDA4VL) or Two (TDA4VE) DSI 4L TX (up to 2.5K)
  • One eDP 4L (TDA4VE/TDA4VL)
  • One DPI

Audio interfaces:

  • Five Multichannel Audio Serial Port (MCASP) modules

Video acceleration:

  • TDA4VE: H.264/H.265 Encode/Decode (up to 480 MP/s)
  • TDA4AL: H.264/H.265 Encode only (up to 480 MP/s)
  • TDA4VL: H.264/H.265 Encode/Decode (up to 240 MP/s)

Ethernet:

  • Two RMII/RGMII interfaces

Flash memory interfaces:

  • Embedded MultiMediaCard Interface ( eMMC™ 5.1)
  • One Secure Digital 3.0/Secure Digital Input Output 3.0 interfaces (SD3.0/SDIO3.0)
  • Two simultaneous flash interfaces configured as
    • One OSPI or HyperBus™ or QSPI, and
    • One QSPI

System-on-Chip (SoC) architecture:

  • 16-nm FinFET technology
  • 23 mm x 23 mm, 0.8-mm pitch, 770-pin FCBGA (ALZ)

Companion Power Management ICs (PMIC):

  • Functional Safety-Compliant support up to ASIL-D / SIL-3 targeted
  • Flexible mapping to support different use cases

The TDA4VE TDA4AL TDA4VL processor family is based on the evolutionary Jacinto™ 7 architecture, targeted at Smart Vision Camera applications and built on extensive market knowledge accumulated over a decade of TI’s leadership in the Vision processor market. The TDA4AL provides high performance compute for both traditional and deep learning algorithms at industry leading power/performance ratios with a high level of system integration to enable scalability and lower costs for advanced vision camera applications. Key cores include next generation DSP with scalar and vector cores, dedicated deep learning and traditional algorithm accelerators, latest Arm and GPU processors for general compute, an integrated next generation imaging subsystem (ISP), video codec, and isolated MCU island. All protected by automotive grade safety and security hardware accelerators.

Key Performance Cores Overview: The “C7x” next generation DSP combines TI’s industry leading DSP and EVE cores into a single higher performance core and adds floating-point vector calculation capabilities, enabling backward compatibility for legacy code while simplifying software programming. The new “MMA” deep learning accelerator enables performance up to 8 TOPS within the lowest power envelope in the industry when operating at the typical automotive worst case junction temperature of 125°C. The dedicated Vision hardware accelerators provide vision pre-processing with no impact on system performance.

General Compute Cores and Integration Overview: Separate dual core cluster configuration of Arm® Cortex®-A72 facilitates multi-OS applications with minimal need for a software hypervisor. Up to four Arm® Cortex®-R5F subsystems enable low-level, timing critical processing tasks to leave the Arm® Cortex®-A72 core’s unencumbered for applications. Building on the existing world-class ISP, TI’s 7th generation ISP includes flexibility to process a broader sensor suite, support for higher bit depth, and features targeting analytics applications. Integrated diagnostics and safety features support operations up to ASIL-D levels while the integrated security features protect data against modern day attacks. CSI2.0 ports enable multi sensor inputs. To further the integration, the TDA4VE TDA4AL TDA4VL family also includes an MCU island eliminating the need for an external system microcontroller.

The TDA4VE TDA4AL TDA4VL processor family is based on the evolutionary Jacinto™ 7 architecture, targeted at Smart Vision Camera applications and built on extensive market knowledge accumulated over a decade of TI’s leadership in the Vision processor market. The TDA4AL provides high performance compute for both traditional and deep learning algorithms at industry leading power/performance ratios with a high level of system integration to enable scalability and lower costs for advanced vision camera applications. Key cores include next generation DSP with scalar and vector cores, dedicated deep learning and traditional algorithm accelerators, latest Arm and GPU processors for general compute, an integrated next generation imaging subsystem (ISP), video codec, and isolated MCU island. All protected by automotive grade safety and security hardware accelerators.

Key Performance Cores Overview: The “C7x” next generation DSP combines TI’s industry leading DSP and EVE cores into a single higher performance core and adds floating-point vector calculation capabilities, enabling backward compatibility for legacy code while simplifying software programming. The new “MMA” deep learning accelerator enables performance up to 8 TOPS within the lowest power envelope in the industry when operating at the typical automotive worst case junction temperature of 125°C. The dedicated Vision hardware accelerators provide vision pre-processing with no impact on system performance.

General Compute Cores and Integration Overview: Separate dual core cluster configuration of Arm® Cortex®-A72 facilitates multi-OS applications with minimal need for a software hypervisor. Up to four Arm® Cortex®-R5F subsystems enable low-level, timing critical processing tasks to leave the Arm® Cortex®-A72 core’s unencumbered for applications. Building on the existing world-class ISP, TI’s 7th generation ISP includes flexibility to process a broader sensor suite, support for higher bit depth, and features targeting analytics applications. Integrated diagnostics and safety features support operations up to ASIL-D levels while the integrated security features protect data against modern day attacks. CSI2.0 ports enable multi sensor inputs. To further the integration, the TDA4VE TDA4AL TDA4VL family also includes an MCU island eliminating the need for an external system microcontroller.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
TDA4AL-Q1 ACTIVE Automotive system-on-a-chip for front camera and ADAS domain control using camera and radar sensors Analytics focused; does not include GPU, higher CPU and AI performance, video encode only
TDA4VE-Q1 ACTIVE Automotive system-on-a-chip for autoparking and driver assist with AI, vision pre-processing and GPU Greater CPU and AI performance, more MCU cores, dual LPDDR4 interfaces
TDA4VM-Q1 ACTIVE Automotive system-on-a-chip for L2, L3 and near-field analytic systems using deep learning Includes GPU, larger memory, integrated PCIe switch, eight-port Ethernet switch, video encode and decode accel

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 11
Type Title Date
* Data sheet TDA4VE TDA4AL TDA4VL Jacinto™ Processors, Silicon Revision 1.0 datasheet (Rev. A) PDF | HTML 18 Aug 2023
* Errata J721S2, TDA4VE, TDA4AL, TDA4VL, AM68A Processor Silicon Errata (Rev. B) PDF | HTML 20 May 2023
* User guide J721S2, TDA4AL, TDA4VL, TDA4VE, AM68A Technical Reference Manual (Rev. C) PDF | HTML 26 Jun 2023
Application note Jacinto7 AM6x/TDA4x/DRA8x Schematic Checklist (Rev. B) PDF | HTML 04 Apr 2024
Functional safety information J721E, J721S2, J7200, J784S4 MCAL TUV Certification 22 Dec 2023
Functional safety information J721E, J721S2, J7200, J784S4 SDL TUV Certification 06 Sep 2023
User guide AM68 Power Estimation Tool User’s Guide (Rev. A) PDF | HTML 16 May 2023
White paper Advanced AI Vision Processing Using AM68A for Industrial Smart Camera Apps PDF | HTML 10 May 2023
User guide Powering Jacinto 7 SoC For Isolated Power Groups With TPS6594133A-Q1 + Dual HCPS PDF | HTML 01 Mar 2023
Application note UART Log Debug System on Jacinto 7 SoC PDF | HTML 09 Jan 2023
User guide J721S2/TDA4VE/TDA4VL/TDA4AL EVM User Guide PDF | HTML 02 Dec 2022

Design & development

Please view the Design & development section on a desktop.

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos